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Chapter 1 - Introduction

1.1 - Abstract
DCPM (Dijkstra-Critical-Path-Management) is an effective method of constructing task priority lists. DCPM has two inputs, and one output.

The first input is an ordered list of tasks which are to be prioritized. The second input is a digraph with two types of vertices: AND vertices (vertices which represent tasks which can only start after all its (immediate) predecessor tasks have been started) and OR vertices (vertices which represent tasks which can start as soon as one of its predecessor tasks has been started). In this digraph, values are associated with both edges and vertices: strictly positive lags, that is, lower bounds on the times between the start of a predecessor and the start of the successor ("Start-to-Start" times), are associated with edges; and non-negative task durations are associated with vertices (this information is optional). Although cycles can be present in the digraph (this is allowed by the presence of OR vertices, which can point to each other or form a circuit), the digraph must have a topological order for the algorithm to run properly (and for the problem to make sense).

The output of DCPM is an ordering of all the tasks of the digraph which prioritizes the completion of the first task in the given list, then prioritizes the completion of the second task in the given list etc, and finally prioritizes the completion of all the tasks in the digraph (this final step gives better answers if task durations are used).

Testing performed with SOT (Schedule Optimization Tool), a complex software

suite which optimizes mine schedules and is developed at MIRARCO (Mining Innovation, Rehabilitation and Applied Research Corporation), shows that DCPM restructures SOT’s task priority lists and schedules in such a way that mine life is reduced without much change in the Net Present Value (NPV).
1.2 - Scheduling

In most industries, goals are achieved while following a schedule, where each task is assigned a time where it can begin its production.  A given task may have its assigned start time delayed for a number of reasons, such as the availability of required resources and the precedence of other tasks.
When looking at several common methods of evaluating the profitability of a schedule, such as net present value and return on investment, one common characteristic is that there is a value associated with achieving profit in the shortest amount of time possible.  For example, in underground mining, it would be most beneficial to mine as much profitable mineral as possible in the first few years of production.  Therefore, the ordering of tasks in the schedule has a crucial effect on the final outcome of the project.
In the past, managers have produced such schedules by slotting individual tasks one by one with the assistance of software like EPS (Enhanced Production Scheduler) or Microsoft Project to accomplish the feat.  Unfortunately, when it comes to larger problems, this practice proves to be very time consuming and leads to very poor (and often infeasible) schedules.  When adhering to the dozens of scheduling constraints imposed by the industry, it is impossible for the human mind to correctly schedule each of the thousands of tasks without breaking any constraints.
One of the very important factors to consider is that scheduling is an NP-complete problem.  This means that when the problem gets large, it no longer makes sense to use a brute force approach to find the optimal solution.  Therefore, we must create an algorithm that generates solutions that are approximately optimal, and this algorithm must be one that fits the underground mining problem very well.

1.3 - Schedule Optimization Tool


Since the summer of 2006, I have been an employee of MIRARCO.  My primary role there has been software developer for the Schedule Optimization Tool (SOT).  This tool is designed to use data provided by a mine planner and try to obtain the optimal (most profitable) schedule for an underground mining project.

In order to explore the many possible solutions, SOT uses a genetic algorithm, where it attempts to learn from previously obtained solutions to try to find the optimal schedule.  By using a combination of randomness and heuristics, SOT can generate task priority lists to be evaluated and improved.

SOT’s criterion to evaluate these priority lists is called net present value, which is the time value of money.  It is the concept that money obtained now is more valuable than money obtained in the future, due to factors such as investing and inflation.  With that being said, it is clearly evident that in theory a mine planner should try to achieve the highest profit possible in the early portion of the mine life.  There are many ways to achieve this.  One way would be to ensure that we reach the best “stopes” (blocks of ground containing profitable mineral) as quickly as possible to boost revenue in the early years.  A second option is to finish the entire project as quickly as possible to limit the effect of money losing its value over the years.  Alternatively, we can also postpone the scheduled start time of costly development tasks as much as possible.

In addition to its ability to evaluate many different scheduling alternatives, SOT has the ability to evaluate several different mining scenarios.  A mining scenario is a set of properties such as costs, available resource quantities, and mineral values.  If a mine planner has various mineral price projections, each of them can be entered into SOT and used in the schedule evaluation.

Also, SOT maintains capacity profiles, which state how much of each resource is available at a given time throughout the mine life.  Examples of resources include workers, machinery, mineral processing units, waste processing units, or even money.  Clearly, in practice there are situations where the availability of resources will change from one time period to another, for instance a certain type of crane that is only available during the first winter of production because it can only reach an arctic mine after the lakes freeze.  

Finally, one of SOT’s best assets is its solid foundation of code testing.  The testing can be broken down into two types: unit testing and functional testing.  The unit tests consist of validating whether or not the code executes correctly.  Each method is tested to ensure that there are no unexpected crashes.  In the case of illegal parameters, we ensure that the correct error message is displayed to the user.  The functional tests, for their part, ensure not only that the code executes correctly, but also that the results returned are correct.  These tests are very common in certifying the correctness of the many algorithms used within SOT.
Chapter 2 – Process

2.1 - Thesis Proposals

At the beginning of the thesis planning phase, three projects of interest were being proposed in conjunction with SOT.

The first idea was to construct a new method to generate task priority lists, which are the order by which an evaluation algorithm will process the mining tasks.  This would make use of several algorithms of graph theory, and combine them so that they apply better to the underground mining scheduling problem.

The second proposal is to modify SOT’s scheduling algorithm so that less computational time is invested towards the later years of the mine life.  Due to the fact that money loses value over time, it is evident that the early portion of the schedule is the most critical section in determining the profitability of a given schedule.  Also, because data sets contain many forms of estimations such as task durations, costs and mineral values, it is almost certain that any produced mine plan becomes invalid as time progresses.  The final schedules produced are merely estimations.


The new scheduler will precisely allocate available resources and start times for tasks the way a normal scheduler would for a fixed amount of time.  A task must both adhere to its predecessor rules and must also be inserted into the schedule at a location where the required resources are available.  Beyond this point, all resources of limited availability are converted into a single resource.  This is done because it is very computationally expensive to check against several resources whether or not a task can be inserted at the current location in the schedule.  Furthermore, all activities now have their planned duration changed so that they can be completed as soon as possible under the new single resource capacity.  In other words, all remaining tasks would be scheduled one at a time with no tasks ever being in progress simultaneously.  The idea is that if each schedule can be evaluated in less time, we have the opportunity to explore more potential solutions.

[image: image1]
Figure 1: Two-tier scheduling algorithm

The final proposed project was the application of the first two proposals.  The plan was to use the task priority list produced by the proposed graph theory algorithm and generate many permutations of this stope ordering.  This would generate thousands of task sequences that would be evaluated by the modified scheduling algorithm in parallel using SHARCNET.  There would be one file containing each of the task lists, and each processor would evaluate one of the remaining sequences before returning to the file to retrieve another one.


Eventually, it was decided that the scope of the thesis would only revolve around the first proposal, which is to use graph theory as a new method to generate task priority lists to be evaluated by a scheduling algorithm.
2.2 - Graph Theory in Underground Mining


One way to solve the scheduling problem is to transform the project into a directed weighted graph.  The nodes of the graph are the tasks that are to be scheduled.  The edges signify a dependency between two tasks.
These nodes have a property value:  its relation to immediate predecessor tasks.  When a node has an AND property, this means that all of its predecessor tasks must have been prioritized before the current task in the task ordering.  Meanwhile, an OR property signifies that at least one of its predecessors must have been prioritized before this task.  An artificial “start node” can added to the graph, and it is the lone predecessor of all mining tasks with no ancestor.   Subsequently, an “end node” can be added, and it is the lone successor of all tasks having no successors.  These artificial nodes can be helpful in the application of various graph theory algorithms.
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One example where assigning an OR property to a node is helpful is in the case of bi-directionality.  Consider a horizontal tunnel linking two vertical ramps.  Obviously, the tunnel can begin its production at one end or at the other end.  In order to represent this situation, the tunnel node must be an OR node.  We add one edge from the tunnel to each ramp, and one edge from each ramp to the tunnel.  By doing this, the tunnel node is allowed to be prioritized after either one of the ramp nodes have been completed.

The edges, for their part, have a weight assigned to them.  This is the time delay between the start times of the tasks that are part of the dependency.  There are two types of dependency:  finish-start and start-start.  The finish-start dependency states that the successor task can begin after the predecessor has finished production, while start-start means that the successor may begin at the same time as its predecessor.  Each edge also has an additional time delay, which is enforced on top of the already-existing lag.  This additional lag allows for a successor task to be forced to begin one month after its predecessor has finished, for example.  In practice, this is very common, for instance when a blast must be followed by an inspection before production may continue.

In this thesis, all dependencies will be converted to start-start.  In order to convert all finish-start relations, consider the following example: node A is the predecessor of node B, and the additional delay is X.  The finish-start edge is changed to a start-start, where the additional lag is X plus the duration of node A.
In practice, it has been determined that a start-start dependency with no additional lag (which means edge cost is zero) does not occur in underground mining.  Since tasks in underground mining are linked based on their physical location in the ground, it is not sensible to require that two separate tasks in two separate locations begin at the exact same time.  The exclusion of zero-length edges is very significant for this project because it reduces the complexity of any algorithm implemented, as we no longer have to account for this special case.  It is also assumed that because time is being used as the unit of measurement when assigning weight values to the graph’s edges, no weight can be negative.
These graphs can contain positive-length cycles.  In the previously-stated example of bi-directionality, the presence of edges from right-to-left and left-to-right form a cycle.  However, due to having no zero-length edges, we can guarantee that all cycles are of positive length.

2.3 - Partnership with MIRARCO


In order to facilitate testing and validation of the algorithm on a large data set, it was desired to create a partnership with MIRARCO to allow access to one of their test data sets, and potentially to have the new task sequence generation algorithm embedded within SOT.  In the end, a “training mine” data set, which is stripped of any confidential corporate data, was provided.  This data set was parsed and converted into a simple readable format for the thesis containing only the tasks, links to other tasks (edges in the graph), the lag time of these links, the AND/OR condition of each task and a list of stopes.

2.4 - Removal of Redundant OR Edges


Clearly, it is important that the algorithm implemented in this thesis is as simple as possible.  However, the presence of OR nodes adds a lot of complexity because they introduce the possibility for cycles and bi-directionality.  Clearly, an OR node only requires that one of its predecessors is in the final task priority list before it can be inserted.  Potentially, the other unused edges could be permanently removed, which would leave each OR node with only one predecessor, and the node effectively becomes an AND node.

Unfortunately, this is not feasible because the removal of edges could potentially cause the graph to become disjoint.  In algorithms that use all predecessor-less tasks as start points, this consequence could create some undesired starting points.  The removal of redundant OR edges was not implemented.
2.5 - Topological Sort

Many approaches have been studied to help solve the underground mine scheduling problem.  One of these is topological sort, which is a linear representation of nodes where each node appears in the ordering before nodes to which it has an outgoing edge. [1]  In this case, due to the presence of AND/OR nodes, the topological ordering of tasks must adhere to the predecessor constraints, meaning that AND nodes must appear in the list after all of its predecessors in the ordering, while OR nodes must appear after at least one of their immediate ancestors.
In standard topological sort, which relates to the situation in which all the nodes are AND nodes, if there is a cycle in the digraph, there cannot be a topological order; conversely, if there is a topological order, the digraph must be acyclic. A consequence of this is that one can generally perform topological by recursively removing sources from the graph, or by recursively removing sinks from the graph.

The presence of OR nodes, however, breaks the sink/source and head/tail symmetries, because it allows for cycles to be present in the digraphs which represent mines for which a feasible schedule, and consequently a topological order, can be found. For example, consider a mine which consists of an access shaft linking the START node to a ring of stopes which can be accessed from any of the two neighboring stopes. The corresponding digraph has no sink; consequently, recursive sink removal cannot construct a topological order. However, recursive source removal, in which an OR node becomes a source as soon as one of its immediate predecessors has been added to the topological order, will find a correct topological order for this mine.

This variation of topological ordering was implemented with the primary focus of using it as a validation tool for all input graphs that will be used in this thesis.  Any graph that has a valid AND/OR topological order has a feasible scheduling solution.
The method used to implement topological sort is to have all tasks in an array, along with links to their predecessors and successors.  In addition, all tasks have a “predecessors remaining” counter.  For all AND nodes, this counter is set to the number of predecessor tasks, while OR nodes have their counter set to 1.  We begin at the “start node”, which is located at the surface of the mine, and propagate our way down to the stopes.  It is a stack-based traversal, where every time we touch a node, we decrement the predecessor counter for all of its successor tasks.  When the counter hits 0 for a given node, it is appended to the topological order.
While testing the code, it was able to expose some errors in the provided graph.  At two different locations in the training mine data set, there was a duplicate edge (in the same direction) between two tasks.  The task linking for the data set is done by hand so it is definitely possible that errors will be overlooked by users when creating the graph.  Clearly, SOT’s algorithms did not uncover this error, but due to the fact that this topological sort uses the predecessor number counter, the incorrect counter value was never able to hit zero.
2.6 - Max-Plus Algebra

A Max-plus algebra is an algebra over the real numbers with maximum and addition as the two binary operations. [2] It is a concept used in several scheduling fields, including the determination of optimal start times in cyclic shops. [3]

The algebra has two binary operators, maximum and addition.  The maximum simply returns the higher of the two values provided, while the addition gets the sum of the numbers.  In the very similar Min-plus algebra, the two operators are minimum and addition.


Due to limited time and lack of prior knowledge of Max-plus, it was decided to omit this algebra.
2.7 - Dijkstra’s Algorithm

Another key algorithm studied in this research is Dijkstra’s algorithm, which was introduced by Edsger Dijkstra in 1959.  This is a graph searching algorithm that tries to find the shortest (or longest) path between two nodes in a weighted graph.  It has several real-life applications, such as shortest path calculation in routing protocols such as OSPF (Open Shortest Path First). [4]
In the case of underground mining, because we are dealing with nodes having AND/OR properties, it is necessary to modify Dijkstra’s algorithm to correctly solve the problem.  For all AND nodes, we want to retain the maximal distance because all predecessors must be started before the current task may proceed.  In the case of OR nodes, we want to retain the minimal distance, because as soon as the first predecessor has been prioritized, the current task is allowed to begin.  If an alternate predecessor is closer to the surface than another one, then it is more efficient to follow this predecessor.
2.8 - Critical Path Management (CPM)

Critical Path Management was an algorithm developed in the 1950s by the United States Navy to improve organization in the building of submarines.  A critical path is a sequence of tasks which add up to the longest duration.  Any project with dependencies between tasks can use this algorithm. [5]

A project can contain many critical paths.  For example, an underground mine has many start-points (tasks without predecessors) and many end-points (tasks without successors).  Each stope may have more than one critical path due to the presence of AND predecessors. 

In order to determine a critical path, begin at a sink node, and backtrack to the source nodes.  If the difference in Dijkstra table distance between the predecessor and the successor is equal to the value of the edge linking the two tasks, then the edge (and thus both tasks) is on a critical path.  
2.9 - Articles by Eugene Levner


Eugene Levner is a professor in Israel that has published several articles on the topic of task scheduling and the efficiency of their algorithms.  In particular, two of his articles were of interest, mainly “Project Scheduling in AND-OR Graphs: A Generalization of Dijkstra’s Algorithm” [6] and “On Fast Path-Finding Algorithms in And-Or Graphs”. [7]
These articles were some of the first ever devoted to solving AND-OR graphs, and one objective was to find an existing implementation of one of the proposed algorithms and interact with it as a black-box; that is, to pass the necessary information to the code and obtain the results without having to really know how the answer is being obtained.  As it turns out, no coding implementation currently exists.

However, the algorithms outlined in these two articles are judged to be too complicated and contain generalities that do not apply to underground mining, mainly the handling of zero-length edges and zero-length cycles, which does not apply to this thesis.  While the ideas proved useful, none of the algorithms are directly implemented.
Chapter 3 – Construction of Final Algorithm

3.1 - Iterative Dijkstra/CPM (DCPM)
Given a list of tasks of interest generally chosen to be stopes with a universal sink (the END task) tagged at the end, we construct a task priority list, which is a topological order of all the tasks meant to complete the first stope as fast as possible, then the second stope as fast as possible, etc., as follows:

For each stope in stope list

Get sub-graph from stope to source nodes


While current stope does not appear in master list



Apply Dijkstra to remaining sub-graph



Apply CPM to find critical paths



Remove all critical tasks which have no critical predecessor





Add removed tasks to master list


End while

End for

The list of stopes in the graph is determined during the parsing of the SOT graph.  This list may contain the stopes that a client wishes to have inserted early in the schedule, or may simply be randomly generated.  In essence, this stope list is usually a sub-set of the graph’s actual stopes, and all tasks not in this list are considered non-stopes in this thesis.
When obtaining a stope’s ancestors, we retrieve the entire sub-graph of predecessors leading back up to source nodes.  A simple linked list is used to store the sub-graph.  We begin at the stope, and add it to the sub-graph, then append all of its predecessors to the list regardless of AND/OR property if the predecessor does not appear in the master list.  We then move to the task in the next position on the sub-graph list, and repeat the steps.  The algorithm ends when we reach the end of the list and no new tasks are added.
During every loop iteration, a number of temporary lists need to be initialized once the remaining sub-graph for the current iteration is known.  The most important factor at this stage is modifying the sub-graph’s predecessor linking so that links to predecessors already in the master list are omitted.  In essence, a node that normally has predecessor tasks may become a source node if all of its predecessors are already in the master task list.
When executing the modified Dijkstra’s algorithm, all of the current sub-graph’s source nodes are assigned a value of zero.  All other nodes are given a value of null.  Then we traverse the table of nodes looking for the “minimal” Dijkstra distance.  A node is considered minimal when it satisfies three conditions:  its value is not null, its value has not been “processed” yet and is the minimal of all remaining unprocessed nodes in the table.  When the minimal value is found, it is marked as being “processed”.  Now it is time to propagate values to its successors.  Let’s consider a value “temp” as the distance value of the minimal node plus the value of the edge linking it to the current successor.  If the successor is an AND node, it receives the maximum between its old distance value and the “temp” value.  If the successor is an OR node, it receives the minimum between its old distance value and the “temp” value.  The algorithm ends when each node is marked as “processed”.
After obtaining these distances for each node in the sub-graph, we apply the critical path algorithm.  Beginning at the stope, we check all predecessors for critical paths.  If the difference in distance values for the two nodes is equal to the value of the edge linking the two, the edge is part of a critical path and thus the predecessor is critical.  We continue the backtracking process back to tasks having no predecessors in the sub-graph.  Having obtained the critical paths, we now remove all critical nodes having a distance value of zero from the sub-graph and add them to the master list.
A special case occurs if a successor of a removed task is an OR node.  Recall that an OR node’s predecessor requirements are satisfied when one of its immediate ancestor tasks have been prioritized.  In this case, the OR node’s predecessor has just been added to the master list, therefore it no longer has to consider any other predecessors.  We then remove all other predecessor links from the actual graph and from the sub-graph, and this node becomes a source.  The reason for altering the actual graph is to enforce that this task is a source node even during future iterations of DCPM.
The resulting sub-graph must have at least one source node.  This could either be an existing source node that was not removed by the previous DCPM iteration, or a new source node created by the removal of a task’s predecessor.  

At this point, the loop re-begins.  DCPM is executed on this new sub-graph, and one or more nodes are once again removed.  The stop case occurs when the stope in question gets added to the master list.  At this point, we know that the stope we are targeting has been reached and all of its predecessor requirements have been satisfied.

This process repeats itself until all stopes have been added to the master list.  Then, all remaining tasks (not in the master list) without successors are linked to a new END task (AND node), which is the new global sink node.  The END task becomes the new “stope” and the iterative DCPM is executed on this new sub-graph.

Even after the end task is being processed, it is not guaranteed that all tasks are there in the master list.  In the case of OR nodes, only one predecessor is required and all others are ignored.  This could lead to some tasks not being considered critical at any point.  These tasks are appended to the master list.
3.2 - Why use DCPM?

The iterative DCPM is in place to ensure that all predecessor constraints are satisfied.  When looking at a single iteration of this algorithm, the critical paths generated are merely straight lines from source (surface) nodes to the sink node (stope).  This set of critical paths ignores the AND/OR condition of nodes.

At each iteration, the goal is to find the tasks that are most critical in the current context.  The reason why these tasks must be removed is because these are the tasks identified as being the ones that if their execution time is delayed, the execution time of the entire sub-graph will be delayed.  As tasks are removed, the context changes and the new distances to the stope change, meaning that the critical paths at a given iteration may be different than the paths at the previous iteration.


The process of iterative DCPM will be illustrated for a small sub-graph containing five nodes (all AND) with node 5 being the stope we are targeting.
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Figure 3: Small sub-graph used to explain DCPM

During the first iteration of Dijkstra, we get the following results:
	1
	2
	3
	4
	5

	0
	100
	0
	1
	101



Using the CPM algorithm, we begin at node 5.  Using the critical edge criteria, we know that node 4 is not critical (101 – 1 ≠ 1), but node 2 is critical (101 – 100 = 1).  Node 2 has only one predecessor (node 1), so we can assume that node 1 is critical as well.  Now, looking at the three nodes on the critical path (1, 2, 5), only node 1 has a distance value of zero.  This node is removed and added to the master list.  Here is the resulting sub-graph.
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Figure 4: Sub-graph after removing node 1
Notice that node 2 is a new source node.  Now, we execute Dijkstra again.  Here are the results

	2
	3
	4
	5

	0
	0
	1
	2



And then we do CPM again beginning with the stope.  This time, node 4 is critical (2 – 1 = 1) but node 2 is not (2 – 0 ≠ 1).  And obviously node 3 is critical because it is the lone predecessor of node 4.  At this iteration, node 3 is the only critical node having a distance value of zero.  It is removed and added to the master list.  Here is the new sub-graph.
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Figure 5: New sub-graph following removal of node 3

At this point, the modified Dijkstra gives a value of zero to node 2 and node 4, while node 5 gets a value of one.  Using the CPM criteria, nodes 2 and 4 are both critical ancestors of the stope, and therefore both nodes can be removed and added to the master list.  At the next iteration, only node 5 remains.  It is a source node and receives a distance value of zero, and it is allowed to be added to the master list.  This signals the end case of DCPM for the current sub-graph, and the algorithm would move on to processing the next stope.

This example shows that the algorithm’s iterative approach with progressive removal of nodes achieves the goal of respecting critical paths while also adhering to predecessor constraints.

3.3 - Programming Choices

In order to implement the solution to the underground mining scheduling problem, the programming language of choice is Java.  This was chosen for a number of reasons, such as:

· Familiarity: This is the language used during the introduction courses in Computer Science, and is encouraged in most courses that have programming assignments.

· Readability:  This programming language encourages the use of objects with methods to solve problems.  By combining effective naming conventions for both methods and variables, a programmer may be able to achieve code that reads like a human’s verbal communication.  Having code that is very readable helps both with debugging errors and implementing/modifying features in existing code.

The Java editing application chosen as a platform for this development is Eclipse.  This tool is ideal because of its structured organization of files, recognition of compilation errors and debugging.  Its debugging feature is especially useful because it allows following the code line-by-line during the execution while displaying the value of all variables in scope.  It also displays the current stack trace and allows checking the current state of variables at all stack locations.
Eclipse’s use of external plug-ins helped facilitate the work of this thesis.  One of the plug-ins used is JUnit, a tool designed to help with structured testing.  When executing the thesis code using JUnit, the code is executed, and if the code executes without errors, a message indicating success is displayed.  Otherwise, the user is notified of the failure, with an error message and stack trace displayed.
The graph itself is stored in a linked list.  Its helper methods make it easy to manipulate data and locate existing entries.  This was favored over more primitive arrays that would save in memory but lack convenient access methods to help the programmer.

In order to obtain SOT’s graph data, a file is generated containing only the information needed for the DCPM algorithm.  A choice was made between binary format and text format.  Although binary file format would be much more efficient due to not having to interpret and translate lines of text, it was determined that storing the graph in text format would be advantageous because the readability helps both in debugging errors and ensuring that the data in the file was parsed correctly.

Here is the information presented for each task in the text file:
· Stope ranking:  This specifies the task’s rank in the stope list.  The first stope to be processed by the algorithm gets a value of 1.  All non-stopes are given a value of -1.

· AND condition:  true if it is an AND node, false otherwise.

· Pairs of values representing predecessor relations.  For each pair, the first value is the index of the predecessor task in the graph’s linked list.  The second value is the cost of the edge linking the two tasks.

· Indexes indicating successors.  There is no need to specify here the edge value, because this information is already stored in the successor node’s predecessor specifications.
Whenever possible, it is encouraged to have data stored in as primitive a form as possible.  It is much less memory intensive to store a primitive integer than to store it as a wrapper Integer object.  However, in one case in the DCPM algorithm this is not possible.

In the modified Dijkstra’s algorithm, the distance value of a node has the value of null until it is assigned a non-negative value.  In Java, the primitive integer cannot be assigned a null value; it must be a numerical value.  On the other hand, all Java objects can be assigned null therefore the wrapper Integer is more convenient in this situation.

3.4 - Constraint Dates


A constraint date is a delay enforced on the start time of a given task regardless of whether or not this task has satisfied its predecessor requirements.  In practice, this could be anything from a political decision to physical factors in the area surrounding the mine.


In order to implement constraint dates, the first requirement is to add a “start node” to the graph.  This is the predecessor of all actual source nodes, and becomes the universal source node for the graph.  
If the task is an AND node, then we simply add an edge between the “start node” and the task in question.  The edge value is the value of the constraint date.  When executing Dijkstra’s algorithm, the task will receive a distance of the max between the constraint date value and the value propagated by its predecessors.  When both conditions are satisfied, the task may begin.
In the case of an OR node, the implementation is more complex because the new predecessor requirement would be represented as “(predecessor1 OR predecessor2 OR predecessor3) AND constraint”.  This thesis does not handle complex predecessor constraints therefore additional work needs to be done.  The node is broken into two twin nodes:
· The first twin is an OR node with the same parents as the original node, but its only successor is the second twin.

· The second twin is an AND node with two parents: the first twin, with an edge value of zero, and the “start node” with an edge value of the constraint lag.  It has the same child nodes as the original node.
It was determined that the handling of constraint dates should only be the responsibility of the scheduler because this thesis merely handles priority lists.  Also, the presence of a “start node” is inconvenient in the context of DCPM because of the constant removal of source nodes.  Therefore, both constraint dates and the start node are not included.
3.5 - Graph Representation Tool


Throughout the thesis it became apparent that text representations of graphs are difficult to explain in a way that everyone can understand.  The extra specification needed to clarify things sometimes created a lot of overhead.  It was determined that the use of a graphical graph representation tool would be very beneficial and would improve efficiency in transmitting information from advisor to student.

A tool called “uDraw Graph” was then introduced.  This tool provides an adequate interface with easy addition of nodes and edges, as well as their respective labels and values.  This tool allowed having these graphs represented as picture files, which made it easy to create small test cases to ensure that the implemented algorithms are functioning as required.

3.6 - Refining Modified Dijkstra’s Algorithm


During testing on the large data set provided by MIRARCO, it quickly became apparent that the proposed algorithm needed to be refined.  The first error discovered lied in the condition that makes an AND node ready to be “processed”.  Recall that the conditions are that the distance value cannot be null, cannot be marked as “processed” and must have the minimal distance of all remaining unprocessed nodes.  An example will be used to define the problem with this approach.  This graph contains only AND nodes.
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Figure 6: Sub-graph illustrating problem with AND condition in Dijkstra

Node 6 is the source node and receives a distance value of zero.  It propagates the value of one to node 3 and 100 to node 1.  Node 3 is minimal and propagates the value of two to node 4.  At this point, node 4 is minimal and gives the value of three to node 5.  Here, node 5 is the minimal value and is now processed.  This is incorrect because this node is an AND node and is processed before its required predecessor (node 2).  This occurs due to the fact that the edge values to the left of the graph are much greater than the values to the right.  The issue caused the incorrect computation of critical paths and the code execution looped endlessly because the algorithm was never able to remove nodes when hitting this special case.

An additional condition must be introduced for an AND node to be ready to be “processed”:  it must not be null, it must not already be marked “processed”, it must be the minimal value of all unprocessed nodes and all of its predecessors must be marked as “processed”.  This last condition ensures that an AND node is not processed by the modified Dijkstra’s algorithm before all of its predecessors have been processed and propagated their values to the current node, and thus ensures that all predecessor constraints are not broken.
3.7 - Problem with OR Node in Dijkstra


Like the AND node, the OR node also had a small problem with the condition making it ready to be “processed”.  Recall that the previous condition was simply that the node must not have a null distance value, it must not already be marked as “processed” and must be the minimal of all unprocessed values.


This condition does ensure that the predecessor requirements are met because when an OR node receives a value from a predecessor being processed (meaning it loses its null value), it is not theoretically ready to be processed without violating the OR rule.  However, the value given may not be optimal.  Recall that the OR nodes retain the minimum of all values propagated by its predecessors.  Therefore, it is necessary that the OR node have the same condition as the AND node to be considered ready to be “processed”.  That is, it must not be marked as processed and all its predecessors are marked as processed.  This gives the node a chance to potentially acquire a more optimal distance from a parent node before being processed by the algorithm and having values propagates to its child tasks.

3.8 - Putting the New Solution Together

Now that new conditions in Dijkstra’s modified algorithm to make a node ready to be processed have been established, one special case must be examined.  What happens if the entire subset of nodes is traversed and none of the nodes are able to satisfy the new AND/OR conditions outlined?

Even though a new condition was added for OR nodes to allow for a more optimal solution to be known before the node is processed, it is still legally allowed to be ready even if only one of its predecessor nodes have been processed.
With that in mind, if there is no unprocessed task which has all predecessors already processed, then select an OR node as follows:  it must not already be marked as processed, it must not have a null distance value, and its current distance value must be the minimum over the remaining unprocessed nodes.
3.9 - Testing With SOT

Permission was granted to import the thesis’ resulting task sequence into SOT.  This tool proved very useful in testing the validity of the code because it contains error handling for any violation of predecessor constraints.  As expected, SOT uncovered a couple errors in the sequence which exposed small errors in the precision of critical path calculations.  Furthermore, SOT’s scheduling algorithm served as a method of evaluating the profitability of task sequences.  In the best case, a result will be obtained that matches or beats the score of SOT-generated schedules.

The first test case was to duplicate one of SOT’s guidance methods, so that both applications use the same ordering of stopes.  The identical ordering is especially important at the head of the priority list.  Then, by looking at SOT’s schedule versus the one generated by DCPM, one can compare the start times of targeted stopes and see if the DCPM’s time-based critical path management is working correctly.  Ideally, the same stope will be attained more quickly in DCPM.

The first task list to be successfully imported into SOT had very inferior results.  The net present value was 20% lower and the mine life (time from start to end of project) was 16% longer.  After investigating, it was determined that the cause for the longer mine life was due to certain stopes of enormous duration being inserted into the schedule too late.  This basically means that the DCPM algorithm places the problematic stopes too close to the end of the priority list.
3.10 - Revising Start-Start Dependencies

The problem with the extended mine life lies in how costs are attributed to edges.  Recall that the cost of an edge is the time delay between the start time of the tail node and the start time of the head node.   In other words, the edge only tells us how much time it will take to begin the successor node.

In the case of a sink node, the edges leading there tell us how much time it takes to get there, but does not factor in the duration of the sink node itself.  This could lead to bad results if the sink node happens to have a very long duration that spans the entire mine life.  Therefore, the focus must be changed from achieving every task quickly to finishing every task quickly.


The first idea was to transform the cost of edges where the head is a sink node from start-start to start-finish.  In order to do this, edges where the head is a sink node have the sink node’s duration added to the existing edge cost.  This would allow that the time to complete the entire chain of tasks get factored into critical path choices.  From the point of view of isolating individual stopes and finding fast paths to achieving it, this changes nothing.  But when doing the final portion of the algorithm where the target stope is the global “end task”, the difference is quite significant because it changes the values of edges competing with one another to be considered critical predecessors of the end task.

However, this only helps matters when the enormous stope is a sink node.  Consider a situation where the stope of large duration is the predecessor of another very small stope, itself being a sink.  The edge between them has a very small cost.  In this situation, the sink stope would properly handle the start-finish dependency; however the large predecessor could ultimately become a problematic node stretching the mine life.  In this special case, the algorithm incorrectly handles the finish time of the entire chain of tasks.  An image will help better illustrate the problem.
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Figure 7: Special case where chain’s duration not properly counted in critical paths

Here, task A1 is the predecessor of task A2.  Their respective durations are 50 and 10.  The edge linking the two is a start-start dependency with value of 10, meaning that the successor may begin 10 units after the predecessor has begun (edge of value 10).  In this case, the graph incorrectly calculates the time to finish the full chain of tasks, and the critical path algorithm will choose the incorrect critical paths.
In order to solve this issue, a modification will have to be made to the global “end task”.

3.11 - Modifying the End Task


In order to correctly consider the finish time of an entire chain of tasks, the end task’s role changes significantly.  Instead of having this node only be the successor of all sink tasks, it is now the successor of all nodes.  The edge linking a task to the end node is the actual duration of the task, all edges between actual tasks of the graph are re-converted to start-start.

The effect of this change is essentially changing all links to start-finish, and allows that the duration-to-completion of the entire chain of tasks be factored into the choices of critical paths.

Here is the new representation of the graph presented in the previous section.  Recall that task A1 has a duration value of 50 and task A2 has a duration value of 10, and that the edge linking the two has a value of 10.
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Figure 8: Graph with newly added links to the end task

In terms of Dijkstra, since the end task is an AND node, it receives the max of the values propagated by its two predecessors.  For this case, the end task receives the value of 50 rather than the value of 20 that it would have previously received by simply following the chain of tasks.

With the new change, if the duration of a node exceeds the sum of the edge values of successor tasks on a linear path to the end task, the algorithm will see this node as being more critical and the task will thus be added to the master list sooner.  However, if this is not the case, then the start-start edges are processed the same way as before and critical paths are not affected.

In order to improve the algorithm, instead of doing the end task portion of the algorithm (after all of the graph’s stopes have been processed), it would be more practical to append the end task to the stope list and have everything processed in the main loop.  In other words, if the graph has 100 stopes, the end task becomes stope 101.

Because the end task is a successor of all nodes, and also that the end task is an AND node and needs to have all predecessors in the master list before it may be added, it is guaranteed that all remaining tasks will be in the master list when the algorithm completes.

Chapter 4 - Final Results

In this section, we answer the following questions:

· Does DCPM improve the NPV of "best" schedules produced by SOT?

· Does DCPM improve the mine life of "best" schedules produced by SOT?

We will see that the answer to the first question is "sometimes," and the answer to the second is "unquestionably yes."

SOT basically produces schedules through the interaction of two modules: The first module, the sequencer, produces task priority lists. The second, the actual scheduler, produces a valid schedule based on each task priority list, taking into account scenarios which contain detailed information about resource availability, etc.

For each of two scenarios and five sequencing heuristics, the schedule with the best NPV produced by SOT and the corresponding sequence are fed to DCPM by extracting from them, in order, their first 100 stopes, and using this list of 100 stopes as input to DCPM. The resulting two priority lists, one which used the sequencer output and the other which used the scheduler output, are then fed back into the scheduler, and their quality compared to the original SOT schedule on the basis of NPV and mine life.


We emphasize that the only information which is passed from SOT to DCPM is the identity and order of the first 100 stopes which appear in the "best" task priority list produced by the SOT sequencer in the first set of tests, and the identity and order of the first 100 stopes which appear in the schedule produced by the SOT scheduler constructed from this best sequence in the second set of tests.


The parameters used in SOT come from a case study done at MIRARCO.  These are values suggested by a mine planner to be explored for profitability.  A range of realistic resource availability values were provided.  The first set of tests will have resource quantities closer to the upper bound of the suggested range, while the second set will have the value of the lower bound of this range.


The actual data set contains 1591 total tasks, which includes 495 stopes and 1096 non-stopes.  Among these tasks, 707 are AND nodes and 884 are OR nodes.  There are 100 tasks that have no predecessors and 340 tasks with no successors.
4.1 - Mine Scheduling with High Resource Availability
For this scenario, five "best" priority lists and the corresponding schedules were produced by SOT. The first 100 stopes were extracted from each of the five priority lists and five schedules and, one group of a 100 stopes at a time, fed to DCPM, which produced ten task priority lists. Each of these priority lists was then fed to the scheduler, yielding a total of ten new schedules, each with its own NPV and mine life.

Here is the NPV comparison for all five of SOT’s heuristic methods:
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Figure 9: NPV Comparison for Five Heuristic Methods

In the case of using DCPM with the sequence output, the NPV score is very close to matching SOT’s best schedule.  In two out of five cases, it even exceeds SOT’s best.  By calculating the average of the five DCPM scores, we obtain a result that is just 1% lower than SOT.

From the schedule output’s perspective, the NPV results did not fare as well, although upon further review the result is particular to the data set being utilized.  It turns out that the graph was originally generated from a partially completed mine, and that there are several stopes with no predecessors.  Regardless of the position of these source stopes in the original task priority list, they will get inserted very early in the final schedule due to having no predecessor constraints to satisfy.
When converting the produced schedule into a parsed graph having a stope list only containing the first 100 occurring stopes, having so many source stopes at the beginning of the schedule means that a very small portion of the graph will be in the head portion.  The head portion of the DCPM algorithm focuses on isolating stopes and their chain of predecessors (none in this case) and finding the critical paths.
Consequently, a very large portion of the graph is included in the tail portion of the algorithm, which has the end task as the lone stope and all remaining nodes as its sub-graph of predecessors.  By definition, this portion of the algorithm will focus on achieving the end task as quickly as possible.  This in turn leads to several important stopes being pushed into the future in an attempt to finish the remaining portion of the mine as quickly as possible.

Also being compared is the mine life of generated schedules. The last step of DCPM focuses on minimizing the completion time of a mine project therefore it is important to see such results.  Here is the mine life breakdown for the five heuristics:
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Figure 10: Mine Life Comparison

Here, we see a greatly reduced mine life in all schedules produced by DCPM.  The biggest improvement of 28% occurs in heuristic 5 in the graph produced by the sequence output.  On average, the mine life is improved by roughly 20%.

4.2 - Mine Scheduling with Lower Resource Availability

As an alternative experiment, SOT’s parameters were changed so that fewer resources are made available per unit of time throughout the mine life.  This means that the task priority list has a higher impact than previously on net present value.  The following example explains why this holds true:


Suppose a graph containing two tasks, A and B (no edge linking them), and there are six resources available per day.  Each requires three resources per day.  In this case, it does not matter which task has higher priority in the list.  Both tasks will have the opportunity to be scheduled in the first day of operation, because their combined resource consumption does not exceed the number of resources available.  

If the number of available resources were lowered to four per day, then the priority ordering matters.  If task A has higher priority, it consumes three resources and only one remains available.  Task B requires more resources than there are available, and thus it must be scheduled the following day.

After repeating the previous experiment with the same five SOT heuristics, here are the NPV comparison results:
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Figure 11: NPV Comparison with fewer resources available

Once again, the DCPM results coming from SOT sequence output have scores that are very competitive to SOT.  The average score is just 0.5% lower than SOT, which is closer than the previous experiment.

The results coming from SOT’s schedule output scored lowest, again because of the number of source stopes that are entered into the initial stope list and the subsequently large size of the tail portion of the task priority list.  However, in heuristic 3, DCPM’s result using schedule output did outscore SOT by 0.5%.


As far as mine life goes, it was apparent that DCPM continues to produce shorter schedules than SOT.
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Figure 12:  Mine Life comparison with fewer available resources

This time, the relative mine life improvement varied a lot from one heuristic to another.  The least improvement in mine life time occurred with heuristic 1, with an improvement of 10% for the sequence output and 8% for the schedule output.  The best improvement occurs with heuristic 5, where the sequence output produces a schedule that is 28% shorter in mine life and the schedule output 27%.
Future Applications


In the future, it is possible to expand the functionality of this thesis.  One obvious utility for this software is to display the critical paths of a given graph.  This could be an extension to an existing visualization tool for underground mining graphs, which is to highlight all of the critical paths.  This would be very useful in showing which areas of the mine are most critical to have completed on time.


In addition, it is possible to alter the factors that determine edge cost.  In this thesis, only time is factored into the value of links between tasks.  It is possible to introduce other factors, such as the cost of resources required to complete a task or the potential revenue for processing stopes.  One could even combine the three outlined factors into a single number, and could experiment with different weight values for each factor.

Finally, it would be possible to generate many master priority lists of tasks.  Instead of simply outputting one list, it would be possible to try different combinations of the stopes provided in the graph.  Currently, it is possible to generate many graphs having different stope orderings externally, but this is more time intensive, and having this functionality internally would be a big benefit.
Concluding Remarks


One of the observations made during this research is that the priority lists having highest profitability (NPV) depend on a couple factors:
· The graph must have additional linking in order to optimize the duration of the tail portion of the schedule.

· The initial list of stopes greatly affects the NPV.  Recall that net present value is time-based and that money loses its value over time.  For this reason, computational effort should be expended in finding good initial lists of stopes, either through heuristics, genetic algorithms or the systematic evaluation of short initial sequences.
Also, it is important to realize that mine life is a key factor in determining the feasibility of a schedule.  There is definitely less risk involved in a project that completes in far less time than another.  Furthermore, in the case of a mine that is finished in less time, it would be possible to re-allocate assigned workers and other resources to a different mine, while the alternate (and longer) schedule would still be in progress.  Here, the re-allocated assets would have the opportunity to achieve even more profit for the company.  

The results of this thesis validate that time-efficient schedules produce good NPV values.  The NPV scores obtained from the sequence output are consistently close to or better than the ones produced by SOT’s best schedule after 100 attempts, while project lengths showed very significant improvements over SOT, by up to 28%.

The DCPM algorithm has two primary parameters that can be altered by a user: the number of stopes in the initial list and their ordering.  Different combinations of these parameters will give different results.  The success of each set of parameters will depend on the data set being used.

All in all, it is evident that DCPM succeeds in finding the critical paths of a mine and subsequently reducing the project completion time while maintaining a very high profitability.
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Appendix A

Class Name:  Task

This is the class specifying the nodes of the graph.  It contains all the properties of underground mining tasks that are necessary for this thesis.
/**
 * 2009 (c) Eric Daoust and Nicolas Robidoux
 */
package thesis;
import java.util.LinkedList;
public class Task {

int isStope;

boolean andCondition;

boolean isDone;

int predecessorsRemaining;

LinkedList<int[]> predecessors;

int successorsRemaining;

LinkedList<Integer> successors;

public Task() {


isStope = -1;


andCondition = true;


isDone = false;


predecessorsRemaining = 0;


predecessors = new LinkedList<int[]>();


successorsRemaining = 0;


successors = new LinkedList<Integer>();

}

public String toString() {


StringBuilder output = new StringBuilder();


output.append("Stope: " + isStope + "\n");


output.append("AND condition: " + andCondition + "\n");


output.append("Predecessors: ");


if (predecessors.size() > 0) {



for (int[] entry : predecessors) {




output.append("[").append(entry[0]).append(",").append(entry[1]).append("] ");



}


} else {



output.append("None");


}


output.append("\n");


output.append("Successors: ");


if (successorsRemaining > 0) {




for (int entry : successors) {





output.append(entry).append(" ");




}


}else {



output.append("None");


}


output.append("\n");


return output.toString();

}
}
Appendix B
Class Name: GraphReader

This class reads the graph, constructing the structure used by the DCPM algorithm while adding pointers to successor tasks to aid with performance.

/**
 * 2009 (c) Eric Daoust and Nicolas Robidoux
 */
package thesis;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Comparator;
import java.util.LinkedList;
import java.util.List;
import java.util.TreeSet;
public class GraphReader {

static final int PREDECESSOR_RECORD_ENTRIES = 2;

LinkedList<Task> initialTaskList;

int[] tasksInTopologicalOrder;

int actualNumberOfTasks;

TreeSet<Task> stopeList;

LinkedList<Integer> freeNodes;

public void reset() {


initialTaskList = null;


tasksInTopologicalOrder = null;


actualNumberOfTasks = 0;


stopeList = null;


freeNodes = null;

}

static class StopeComparator implements Comparator<Task> {


public int compare(Task arg0, Task arg1) {



return arg0.isStope - arg1.isStope;


}

}

public void produceReducedTaskListFromFile(File taskFile) throws FileNotFoundException, IOException {


BufferedReader reader = new BufferedReader(new FileReader(taskFile));


String line = reader.readLine();


initialTaskList = new LinkedList<Task>();


line = reader.readLine();


actualNumberOfTasks = Integer.valueOf(line.substring(line.indexOf(":") + 2));


line = reader.readLine();


LinkedList<String> currentTask = new LinkedList<String>();


int i = 0;


while (line != null) {



if (line.equals("END")) {




Task task = getReducedTaskHavingDescription(currentTask);




initialTaskList.add(task);




currentTask.clear();




i++;



} else if (!line.startsWith("Index"))




currentTask.add(line);



line = reader.readLine();


}

}

public void produceExtendedTaskListFromFile(File taskFile) throws FileNotFoundException, IOException {


BufferedReader reader = new BufferedReader(new FileReader(taskFile));


String line = reader.readLine();


initialTaskList = new LinkedList<Task>();


stopeList = new TreeSet<Task>(new StopeComparator());


freeNodes = new LinkedList<Integer>();


line = reader.readLine();


LinkedList<String> currentTask = new LinkedList<String>();


int i = 0;


while (line != null) {



if (line.equals("END")) {




Task task = getExtendedTaskHavingDescription(currentTask);




initialTaskList.add(task);




if(task.isStope > 0)





stopeList.add(task);




if(task.predecessors.size() == 0) {





freeNodes.add(i);




}




currentTask.clear();




i++;



} else if (!line.startsWith("Index"))




currentTask.add(line);



line = reader.readLine();


}

}

public void fillReducedGraphWithExtendedData(File output) throws IOException {


FileWriter file = new FileWriter(output);


file.write("Size: " + initialTaskList.size() + "\n");


freeNodes = new LinkedList<Integer>();


Task outerTask, innerTask;


int outerCounter;


for (outerCounter = 0; outerCounter < initialTaskList.size(); outerCounter++) {



outerTask = initialTaskList.get(outerCounter);



for (int innerCounter = 0; innerCounter < initialTaskList.size(); innerCounter++) {




innerTask = initialTaskList.get(innerCounter);




for (int[] entry : innerTask.predecessors) {





if (entry[0] == outerCounter) {






outerTask.successors.add(innerCounter);






break;





}




}



}



outerTask.predecessorsRemaining = outerTask.predecessors.size();



if (!outerTask.andCondition)




outerTask.predecessorsRemaining = 1;



if (outerTask.predecessorsRemaining == 0) {




freeNodes.add(outerCounter);



}



outerTask.successorsRemaining = outerTask.successors.size();



outerTask.isDone = false;


}


Task task;


for (int counter = 0; counter < initialTaskList.size(); counter++) {



task = initialTaskList.get(counter);



file.write("Index " + counter + "\n");



file.write(task.toString());



file.write("END\n");


}


file.close();

}

public Task getReducedTaskHavingDescription(List<String> description) {


Task task = new Task();


String reducedString;


for (String line : description) {



if (line.startsWith("Stope: ")) {




reducedString = line.replace("Stope: ", "");




task.isStope = Integer.valueOf(reducedString);



} else if (line.startsWith("AND condition: ")) {




reducedString = line.replace("AND condition: ", "");




task.andCondition = Boolean.valueOf(reducedString);



} else if (line.startsWith("Predecessors: ")) {




reducedString = line.replace("Predecessors: ", "");




int predindex;




int commaIndex;




String array;




int[] predInfo;




while (reducedString.contains("[")) {





predInfo = new int[PREDECESSOR_RECORD_ENTRIES];





predindex = reducedString.indexOf("]");





array = reducedString.substring(1, predindex);





commaIndex = array.indexOf(",");





predInfo[0] = Integer.valueOf(array.substring(0, commaIndex));





predInfo[1] = Integer.valueOf(array.substring(commaIndex + 1));





task.predecessors.add(predInfo);





reducedString = reducedString.substring(reducedString.indexOf(" ") + 1);




}



}


}


return task;

}

public Task getExtendedTaskHavingDescription(List<String> description) {


Task task = getReducedTaskHavingDescription(description);


String reducedString;


for (String line : description) {



if (line.startsWith("Successors: ")) {




reducedString = line.replace("Successors: ", "");




while (reducedString.contains(" ")) {





task.successors.add(Integer.valueOf(reducedString.substring(0, reducedString.indexOf(" "))));





reducedString = reducedString.substring(reducedString.indexOf(" ") + 1);




}



}


}


task.predecessorsRemaining = task.predecessors.size();


if (!task.andCondition)



task.predecessorsRemaining = 1;


task.successorsRemaining = task.successors.size();


return task;

}
}
Appendix C
Class Name:  TopologicalSort

This class generates a topological ordering of the graph where the positioning of all nodes in the order satisfies their predecessor constraints.  The ordering is used to determine sub-graph ordering in the DijkstraCPM class.
/**
 * 2009 (c) Eric Daoust and Nicolas Robidoux
 */
package thesis;
import java.io.File;
import java.io.FileWriter;
import java.io.IOException;
import java.util.LinkedList;
import java.util.Stack;
public class TopologicalSort {

static final int PREDECESSOR_RECORD_ENTRIES = 2;

LinkedList<Task> initialTaskList;

int[] tasksInTopologicalOrder;

int actualNumberOfTasks;

LinkedList<Integer> freeNodes;

public void reset() {


initialTaskList = null;


tasksInTopologicalOrder = null;


actualNumberOfTasks = 0;

}

public void produceTopologicalOrder(File outputFile) throws IOException {


FileWriter file = new FileWriter(outputFile);


// initialTaskList contains the dummy 'start task' and we don't want that in our final


// topological order, so the tasksInTopologicalOrder has one fewer objects in the array


tasksInTopologicalOrder = new int[initialTaskList.size()];


int orderedTaskSize = 0;


Stack<Integer> readyTaskList = new Stack<Integer>();


Task readyTask, currentSuccessor;


int currentTaskIndex; // set to 0 so that the first task processed is the 'start task'


for(int i : freeNodes) {



readyTaskList.push(i);


}


// now we begin the stack-based traversal algorithm to produce a topological order


do {



currentTaskIndex = readyTaskList.pop();



readyTask = initialTaskList.get(currentTaskIndex);



for (int successorIndex : readyTask.successors) {




currentSuccessor = initialTaskList.get(successorIndex);




currentSuccessor.predecessorsRemaining--;




if (currentSuccessor.predecessorsRemaining == 0)





readyTaskList.push(successorIndex);



}



file.write(currentTaskIndex + "\n");



tasksInTopologicalOrder[orderedTaskSize] = currentTaskIndex;



orderedTaskSize++;



// exit case is when the 'pop' above pops the last element from the stack, we are now done


} while (!readyTaskList.isEmpty());


file.close();

}
}

Appendix D

Class Name:  DijkstraCPM

This is the main algorithm of the thesis.  It performs the iterative Dijkstra/CPM algorithm on the graph and outputs a master task ordering.

/**
 * 2009 (c) Eric Daoust and Nicolas Robidoux
 */
package thesis;
import static org.junit.Assert.fail;
import java.io.BufferedReader;
import java.io.File;
import java.io.FileNotFoundException;
import java.io.FileReader;
import java.io.FileWriter;
import java.io.IOException;
import java.util.Collections;
import java.util.Iterator;
import java.util.LinkedList;
import java.util.TreeSet;
public class DijkstraCPM {

// general fields

static final int PREDECESSOR_RECORD_ENTRIES = 2;

LinkedList<Task> initialTaskList;

int actualNumberOfTasks;

TreeSet<Task> stopeList;

LinkedList<Integer> freeNodes;

// topological sort

LinkedList<Integer> tasksInTopologicalOrder;

// dijkstra

private LinkedList<Boolean> andCondition;

private LinkedList<Boolean> isDone;

private LinkedList<Integer> predecessorsRemaining, successorsRemaining;

private LinkedList<LinkedList<int[]>> predecessors;

private LinkedList<LinkedList<Integer>> successors;

// algorithm storage stuff

LinkedList<Integer> activeSubGraph;

Task activeStope;

LinkedList<Integer> dijkstraDistances;

LinkedList<Integer> masterList;

LinkedList<String> nameDict;

public void executeAlgorithm(File nameDictFile, File outputSequenceFile) throws IOException {


masterList = new LinkedList<Integer>() {



static final long serialVersionUID = 0L;



// overload the toString to improve readability of the list



// much easier to read int list when it's one entry per line



public String toString() {




StringBuilder sb = new StringBuilder();




Iterator<Integer> itr = iterator();




while (itr.hasNext()) {





Integer i = itr.next();





sb.append(i).append("\n");




}




return sb.toString();



}


};


for (Task stope : stopeList) {



activeStope = stope;



int stopeIndex = initialTaskList.indexOf(activeStope);



// if current stope is already in the list, no further work needs to be done



if (masterList.contains(stopeIndex))




continue;



activeSubGraph = getAllPredecessorsForTask(activeStope);



activeSubGraph.add(initialTaskList.indexOf(stope));



while (!masterList.contains(stopeIndex)) {




initDijkstra();




executeDijkstraAlternate();




executeCPM();



}


}


// these removals are needed to remove the end task from the master list


masterList.removeLast();


initialTaskList.removeLast();


validate(); // validates that the master list adheres to predecessor constraints


loadNameDict(nameDictFile); //load SOT task names for output of SOT sequence


outputSequence(outputSequenceFile);

}

private void validate() {


Task task;


int currentIndex = 0;


int prevPredecessorCounter;


for (int i : masterList) {



task = initialTaskList.get(i);



prevPredecessorCounter = 0;



for (int[] pred : task.predecessors) {




int predIndex = masterList.indexOf(pred[0]);




if (predIndex < currentIndex)





prevPredecessorCounter++;



}



if (task.andCondition && prevPredecessorCounter != task.predecessors.size())




fail();



else if (!task.andCondition && prevPredecessorCounter < 1 && task.predecessors.size() > 0)




fail();



currentIndex++;


}

}

public void outputSequence(File outputFile) throws IOException {


FileWriter writer = new FileWriter(outputFile);


int index = 0;


for (int i : masterList) {



writer.append("Name:" + nameDict.get(i));



if (index < masterList.size() - 1)




writer.append(",");



writer.append("\n");



index++;


}


writer.close();

}

public void loadNameDict(File nameDictFile) throws FileNotFoundException, IOException {


BufferedReader reader = new BufferedReader(new FileReader(nameDictFile));


nameDict = new LinkedList<String>();


reader.readLine();


reader.readLine();


String line = reader.readLine();


while (line != null) {



nameDict.add(line);



line = reader.readLine();


}


reader.close();

}

public void executeCPM() {


LinkedList<Integer> criticalList = new LinkedList<Integer>();


int subGraphIndex;


criticalList.add(initialTaskList.indexOf(activeStope));


int criticalListIndex = 0;


int outerDijkstra;


while (criticalListIndex < criticalList.size()) {



subGraphIndex = activeSubGraph.indexOf(criticalList.get(criticalListIndex));



outerDijkstra = dijkstraDistances.get(subGraphIndex);



int innerSubGraphIndex, innerDijkstra;



for (int[] pred : this.predecessors.get(subGraphIndex)) {




if (criticalList.contains(pred[0]))





continue;




innerSubGraphIndex = activeSubGraph.indexOf(pred[0]);




innerDijkstra = dijkstraDistances.get(innerSubGraphIndex);




if (outerDijkstra - innerDijkstra == pred[1]) { // signifies critical predecessor





criticalList.add(pred[0]);




}



}



criticalListIndex++;


}


LinkedList<Integer> removals = new LinkedList<Integer>();


for (int value : criticalList) {



subGraphIndex = activeSubGraph.indexOf(value);



if (dijkstraDistances.get(subGraphIndex) == 0) {




removals.add(value);




for (int s : successors.get(subGraphIndex)) {





int successor = activeSubGraph.indexOf(s);





if (!andCondition.get(successor)) {






predecessors.get(successor).clear();






initialTaskList.get(s).predecessors.clear();





}




}



}


}


activeSubGraph.removeAll(removals);


Collections.reverse(removals);


masterList.addAll(removals);

}

public void reset() {


initialTaskList = null;


tasksInTopologicalOrder = null;


actualNumberOfTasks = 0;

}

private Integer max(Integer a, Integer b) {


if (a == null)



return b;


if (b == null)



return a;


return Math.max(a, b);

}

private Integer min(Integer a, Integer b) {


if (a == null)



return b;


if (b == null)



return a;


return Math.min(a, b);

}

public void getTopologicalOrder(File file) throws IOException {


BufferedReader reader = new BufferedReader(new FileReader(file));


String line = reader.readLine();


this.tasksInTopologicalOrder = new LinkedList<Integer>();


int currentIndex;


while (line != null && line != "") {



currentIndex = Integer.parseInt(line);



tasksInTopologicalOrder.add(currentIndex);



line = reader.readLine();


}

}

public void initDijkstra() {


this.andCondition = new LinkedList<Boolean>();


this.isDone = new LinkedList<Boolean>();


this.predecessors = new LinkedList<LinkedList<int[]>>();


this.successors = new LinkedList<LinkedList<Integer>>();


this.predecessorsRemaining = new LinkedList<Integer>();


this.successorsRemaining = new LinkedList<Integer>();


this.dijkstraDistances = new LinkedList<Integer>();


int index = 0;


Task task;


for (int taskIndex : activeSubGraph) {



task = initialTaskList.get(taskIndex);



andCondition.add(task.andCondition);



isDone.add(false); // all begin at false



predecessors.add(new LinkedList<int[]>());



for (int[] pred : task.predecessors) {




// we want to convert the initialTaskList indexes to




if (!masterList.contains(pred[0]) && activeSubGraph.contains(pred[0]))





predecessors.getLast().add(pred);



}



predecessorsRemaining.add(predecessors.getLast().size());



successors.add(new LinkedList<Integer>());



for (int succ : task.successors) {




// we want to convert the initialTaskList indexes to




// tasksInTopologicalOrder indexes for faster searching




if (!masterList.contains(succ) && activeSubGraph.contains(succ))





successors.getLast().add(succ);



}



successorsRemaining.add(successors.getLast().size());



index++;


}

}

public void executeDijkstraAlternate() {


int index = 0;


for (int i : activeSubGraph) {



if (predecessors.get(index).size() == 0)




dijkstraDistances.add(0);



else




dijkstraDistances.add(null);



index++;


}


boolean algorithmDone = false;


while (!algorithmDone) {



int minIndex = -1;



Integer minValue = null;



index = 0;



for (Integer storedValue : dijkstraDistances) {




if (!isDone.get(index) && storedValue != null) {





boolean ready = true;





for (int[] pred : predecessors.get(index)) {






if (!isDone.get(activeSubGraph.indexOf(pred[0]))) {







ready = false;







break;






}





}





if (ready) {






minIndex = index;






minValue = storedValue;






break;





}




}




index++;



}



index = 0;



if (minIndex == -1) {




for (Integer storedValue : dijkstraDistances) {





Integer min = min(minValue, storedValue);





if (!andCondition.get(index) && !isDone.get(index) && min != null && min.equals(storedValue)) {






minIndex = index;






minValue = storedValue;





}




}



}



if (minIndex == -1)




fail();



LinkedList<Integer> successorList = successors.get(minIndex);



for (int successor : successorList) {




// find successor location in ordered task list, set its value




// in dijkstra to dijkstra[processingIndex]+costOfEdge




if (!activeSubGraph.contains(successor))





continue;




int activeSubGraphIndex = activeSubGraph.indexOf(successor);




boolean andCondition = this.andCondition.get(activeSubGraphIndex);




for (int[] pred : this.predecessors.get(activeSubGraphIndex)) {





int subGraphIndex = activeSubGraph.indexOf(pred[0]);





// pred points to initial task list - we need active sub graph index





if (subGraphIndex == minIndex) {






int newValue = dijkstraDistances.get(minIndex) + pred[1];






Integer temp;






if (andCondition) {







temp = max(dijkstraDistances.get(activeSubGraphIndex), newValue);







if (temp.equals(newValue))








dijkstraDistances.set(activeSubGraphIndex, newValue);






} else { // orCondition







temp = min(dijkstraDistances.get(activeSubGraphIndex), newValue);







if (temp.equals(newValue))








dijkstraDistances.set(activeSubGraphIndex, newValue);






}






break;





}




}



}



isDone.set(minIndex, true);



boolean isDone = true;



for (boolean b : this.isDone) {




if (b == false) {





isDone = false;





break;




}



}



algorithmDone = isDone;


}

}

public LinkedList<Integer> getAllPredecessorsForTask(Task task) {


LinkedList<Integer> predecessors = new LinkedList<Integer>();


int listTraversalIndex = 0; // the index indicating where we are in


// traversing the list to look for


// additional predecessors


do {



for (int[] entry : task.predecessors) {




int topologicalIndex = tasksInTopologicalOrder.indexOf(entry[0]);




if (!predecessors.contains(topologicalIndex) && !masterList.contains(entry[0])) {





// add at head so that last predecessor (and first in list) is free node, helps dijkstra





predecessors.add(topologicalIndex);




}



}



// the algorithm stops when the index goes out of bounds, nextName



// will be null



// in the case where nextName = null, getIndexAssociatedToName



// returns the dummy 'start task'



// start task is the one reserved to start the topological sort



// computation, and triggers exit here



task = null;



if (listTraversalIndex < predecessors.size())




task = initialTaskList.get(tasksInTopologicalOrder.get(predecessors.get(listTraversalIndex)));



listTraversalIndex++;


} while (task != null);


TreeSet<Integer> tempSet = new TreeSet<Integer>();


tempSet.addAll(predecessors);


predecessors.clear();


for (int i : tempSet) {



predecessors.add(tasksInTopologicalOrder.get(i));


}


// need the list in the topological order


return predecessors;

}
}
Figure � SEQ Figure \* ARABIC �2�: Application of OR property




































































